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Dependence of domain wall dynamics on background wave number

Carina Kamaga, Denis Funfschilling,* and Michael Dennin
Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697-4575, USA

~Received 25 April 2003; published 28 January 2004!

We report on the growth of domains of standing waves in electroconvection in a nematic liquid crystal,
focusing on the evolution of domain walls. An ac voltage is applied to the system, forming an initial state that
consists of traveling striped patterns with two different orientations, zig and zag rolls. The standing waves are
generated by suddenly applying a periodic modulation of the amplitude of the applied voltage that is approxi-
mately resonant with the traveling frequency of the pattern. By varying the modulation frequency, we are able
to vary the steady-state, average wave number. We characterize the evolution of the domain walls as a function
of the average background wave number by measuring the total area and length of domain walls present in the
system as a function of time. We find that as the background wave number is varied away from the ‘‘natural’’
wave number for the pattern, the evolution of the domain walls occurs at a faster rate.
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I. INTRODUCTION

Our understanding of the role of the interaction betwe
defects and a periodic background during the ordering
patterned systems after a sudden quench remains lim
Simulations of the growth of striped domains clearly point
the importance of understanding the interaction between
fects and the background wave number@1–4#. Yet, experi-
mental studies are limited@6,5,7#, and there is no genera
theoretical understanding of the problem. The generic pr
lem of the response of a system to a sufficiently large, s
den change of an external parameter, referred to as a que
arises in many materials situations, such as magnetic m
rials, alloys, binary fluids, polymer blends, and liquid cry
tals @8#. Generally, one is interested in the case where
initially uniform state loses stability after the quench. Wh
there is more than one possibility for the new state~such as
spin up or down in a magnetic system!, domains form. These
domains coarsen, or grow, as a function of time, a proc
that is often referred to asdomain coarseningor phase or-
dering. The dynamics of phase ordering for the special c
of uniform domains is relatively well understood@8#. In gen-
eral, such domains are characterized by a single length s
l (t) that grows according to a power lawl (t);tn. Heren is
referred to as thegrowth exponent. For systems with a non
conserved order parametern51/2. Systems with a con
served order parameter haven51/3. Generally, these expo
nents can be understood in terms of the topological def
of the relevant order parameter@8#. In contrast, for patterned
domains, there is no general explanation of the obser
growth exponents, in terms of the topological defects or o
erwise. However, specific examples clearly point to the
portance of the topological defects@1–5#. One finds that
there are two main complications when considering
coarsening of patterned domains:~1! the interaction between
the defects and the periodic background, and~2! the addi-
tional length scale that is set by the periodicity of the patte
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In this paper, we focus on the issue of the impact of
background wave number on the dynamics of topologi
defects.

For systems in which the domains are composed
stripes, theoretical studies of the power-law scaling of
late-time domain growth has focused on simulations a
analysis of the Swift-Hohenberg equation@1–4,9–12#. Ex-
periments have been performed in both a thermodyna
system, diblock copolymers@5,6#, and a driven system, elec
troconvection@7#. In this paper, we will refer tothermody-
namic quenches, or systems, as ones where the asymp
state after the quench is one of thermodynamic equilibriu
Driven systems refer to ones in which the asymptotic stat
not an equilibrium state, but it is a steady state of the syst
Typically, both the simulations and experiments consid
measurements of the structure factorS(k). An important as-
pect of such measurements is the fact that the width of
relevant peaks in the structure factor is a measure of b
variations in wave number and domain size. Therefore,
formation about the two important lengths scales are mi
in a nontrivial way. Various other measures of the dom
growth that do not contain information about the wave nu
ber have been studied. These include orientational corr
tion functions for the wave vector field, defect densities, a
domain-wall lengths. All of these measures probe only
domain size.

In both simulations and experiments, the changes in
width of the structure factor occur at a significantly slow
rate than changes in the other measures. In numerical s
lations, growth exponents that are determined from meas
ments ofS(k) are consistent withn51/5 @1,10#. In contrast,
measurements based on orientational correlation funct
exhibit a model dependence. Simulations of a version of
Swift-Hohenberg model that has a potential are consis
with a growth exponentn51/4, but the nonpotential cas
givesn51/2 @1#. The two experimental measures of strip
domain growth are consistent with the simulation results
the potential case. The orientational correlation function a
defect densities have been measured experimentally
diblock copolymers@6#, giving n51/4. For electroconvec-
tion, it was found that the growth exponent measured us
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KAMAGA, FUNFSCHILLING, AND DENNIN PHYSICAL REVIEW E 69, 016308 ~2004!
S(k) is consistent withn51/5 and measurement of the d
main size using total domain-wall length gaven51/4 @7#.
These experiments clarified that the differences in gro
exponents betweenS(k) and other measures could be e
plained by considering the evolution of the local wave nu
ber distribution, which is found to dominate the width
S(k) at late times@7#.

The issue of the interaction between defects and the b
ground periodicity is apparent in various features of dom
growth, as revealed in simulations. First, domain growth
observed to be affected by strong pinning of grain bou
aries by the periodic background@2,11#. Because the pinning
strength is related to the amplitude of the pattern, the m
sured growth exponents can depend on the depth of
quench. A related issue is that the growth exponents are
found to depend on the level of noise in the system@9,12#.
This is attributed to the fact that noise can provide a sou
of ‘‘depinning’’ for the defects. Finally, the difference in th
average wave number for the potential and nonpotential
sions of the Swift-Hohenberg equations has been propose
one possible explanation of the different scaling expone
for the orientational correlation function@1#. Recent simula-
tions using a different model of stripe formation~the nonlin-
ear phase model! have shown that different classes of defe
can lead to different growth exponents@4#. These same simu
lations suggest that the domain-wall width and length evo
with different scaling in time@4#, suggesting yet another pos
sible length scale in the problem.

In this paper, we report on a systematic, experimen
study of the impact of changes in the average wave num
on the growth of domains in which we find that the doma
growth occurs at a faster rate as the wave number is tu
away from the ‘‘natural’’ wave number. This provides a us
ful test of the proposed explanation, based on the ba
ground wave number, for different growth rates that are
served in two versions of the Swift-Hohenberg equation@1#.
In particular, the growth of domains in the simulation al
was faster when the system was not at the ‘‘natural’’ wa
number@1#. An important feature of the experiments is th
we can tune the wave number over a range of values, ins
of just the two wave numbers considered in the simulati
@1#. Furthermore, we report on measurements of the beha
of the domain-wall length and area that are compared w
simulations reported in Ref.@4#. The system we use is elec
troconvection in the nematic liquid crystal I52@13,14#. A
nematic liquid crystal is a fluid in which the molecules a
aligned on average@15#. The axis along which the averag
alignment points is referred to as the director. For electroc
vection @16#, a nematic liquid crystal is placed between tw
glass plates that have been treated so that the direct
everywhere parallel to the plates. An ac voltage is app
perpendicular to the plates. Above a critical value of t
voltage, a pattern of stripes forms. Because the system
anisotropic~the director selects a preferred axis!, the states
are usually characterized by the angle between the wave
tor of the pattern and the undistorted directoru. States with
the same wave number and angle6u are degenerate an
referred to as zig and zag, respectively. For the system
cussed in this paper, the initial pattern consists of four tr
01630
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eling stripe states@17#; right- and left-traveling zig and zag
rolls. It has been established for this system that abov
critical value for a modulation of the applied voltage at twi
the traveling frequency, the system consists of either sta
ing zig or zag rolls@14#. Therefore, a sudden quench of th
system from below this critical value to above it results
the nucleation of domains of standing zig and zag ro
which proceed to coarsen. The dominant topological defe
in the system are domain-walls between the domains of
and zag rolls. We will focus on the evolution of thes
domain-walls.

As discussed above, measurements of growth expon
for this system have focused on quenches that used ex
twice the traveling frequency. This results in domains w
the natural wave number for the pattern. Reference@7# re-
ports a value ofn51/4 for the growth of the domain size
based on measurements of the domain-wall dynamics,
n51/5 for the scaling ofS(k). A single initial experiment for
a modulation frequency slightly different from twice th
traveling frequency suggested similar behavior. Howeve
systematic exploration of changes in the wave number,
varying the modulation frequency, is possible for this syst
@14#, and was not carried out at the time. In this paper,
report on such a study. The rest of the paper is organize
follows. Section II provides the details of the experimen
system and the techniques used to analyze the dom
growth. Section III presents the results of the experime
Section IV provides a discussion of the results.

II. EXPERIMENTAL DETAILS

We used the liquid crystal I52@18# doped with iodine.
Due to the nature of I52, 8% iodine by weight was us
initially. However, a significant fraction of the iodine evap
rates before the cells are filled, so the final concentratio
not well controlled. We used commercial liquid crystal ce
@19# composed of two transparent glass plates coated wi
transparent conductor, indium-tin oxide. The cells we
2.5432.54 cm2, with the conductor forming a square
31 cm2 in the center of the cell. The glass was also trea
with a rubbed polymer to obtain uniform planar alignment
the director. We define the direction parallel to the und
torted director to be thex axis and the direction perpendicu
lar to the undistorted director to be they axis.

The apparatus is described in detail in Ref.@20#. It
consists of an aluminum block with glass windows. T
temperature of the block was kept constant to60.001 °C.
Polarized light is applied from the bottom of the cell. Abov
the cell, there is a charge-coupled device camera to cap
the image of patterns using the standard shadowgraph t
nique @21#.

We apply an ac voltage of the formV(t)5A2@Vo
1Vmcos(vmt)#cos(vdt) perpendicular to the glass plate
Here Vo is the amplitude of the applied voltage in the a
sence of modulation,Vm is the modulation amplitude,vm is
the modulation frequency, andvd is the driving frequency.
For all of the experiments reported on here,vd/2p
525 Hz. The critical voltageVc is defined as the value ofVo
for which the system makes a transition from a uniform st
8-2
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DEPENDENCE OF DOMAIN WALL DYNAMICS ON . . . PHYSICAL REVIEW E69, 016308 ~2004!
to the superposition of traveling rollsin the absence o
modulation. For the studies reported on here,Vc516.6 V.
There are two relevant control parameters:e5(Vo /Vc)

221
andb5Vm /Vc .

For the experiments discussed here, the system is init
at e50.04 andb50, i.e., above onset with no modulatio
This corresponds toVo517.0 V. As mentioned in Sec. I
there are only four modes needed to describe the obse
convection rolls: zig and zag, right- and left-traveling o
lique rolls. This state is an example of spatiotemporal ch
in that the amplitude of the four modes varies irregularly
space and time@22#. For eache andvm , there exists a criti-
cal value ofb, bc , above which the system consists of stan
ing zig and zag rolls. A quench corresponds to a sud
change ofb to some valueb.bc . At and belowVc , the
modulation frequency with the strongest coupling to the p
tern, and correspondingly smallest value ofbc , is twice the
Hopf frequencyvh . The Hopf frequency is the travelin
wave frequency atVc . As one increasese, the natural fre-
quency of the pattern shifts. Because we worked at a fi
value ofe, the smallest value ofbc occurs for a modulation
frequencyvm52v* , wherev* is the natural frequency o
the pattern at the given value ofe. Because it is the relative
shift in frequency that matters, we will consider the behav
as a function ofd f 5 f * 2 f m/2, where f * 5v* /2p and f m
5vm/2p. For all experiments considered here, the natu
frequency wasf * 50.2660.01 Hz. Figure 1 is a plot ofbc
as a function ofd f for e50.04. We focus almost exclusivel
on the negative values ofd f because ford f .10.01 Hz, the
pattern stabilized by modulation is standing waves that a
superposition of zig and zag rolls, and not individual d
mains of standing zig and zag rolls.

Quenches were performed for a range ofd f . The final
value of b in each case was selected so that the que
depths all corresponded toDb50.02, as measured from th
onset of standing waves~solid curve in Fig. 1!. The camera
was triggered to take the images at the same point in

FIG. 1. Onset value for standing waves (bc) at a value of
e50.04 as a function ofd f 5 f * 2 f m/2. Heref * is the natural travel
frequency of the pattern ate50.04 and f m is the modulation
frequency. The parameterbc is the critical value ofb5Vm /Vc .
Here Vm is the modulation voltage andVc516.6 V is the critical
voltage for the onset of a pattern in the absence of any modula
The solid line is a fit to the data used to determinef * 50.266
20.01 Hz.
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modulation cycle. This ensured that the pattern was ima
at the same point in the standing wave cycle. Each im
covered a region of 4.133.1 mm2 of the cell. Time is scaled
by the director relaxation timetd[g1d2/(p2K11)50.2 s.
Here g1 is a rotational viscosity,K11 is the splay elastic
constant, andd is the thickness of the cell.

An example of a small region of the pattern after a quen
is given in Fig. 2. Two different quenches are illustrate
d f 50.008 Hz andd f 520.072 Hz. The images illustrat
the type of patterns on which we focused: standing zig a
zag rolls separated by domain-walls. The domain-wa
clearly consist of the superposition of zig and zag rolls. F
significantly larger values ofd f , there is qualitatively differ-
ent behavior. Regions of superposition that are ‘‘domains’
their own right appear. Further increasingud f u results in pat-
terns that are entirely the superposition of zig and zag ro
as existed ford f .0.01 Hz. Though interesting, in these pa
terns the defects are no longer domain-walls, but locali
defects. Future work will consider in more detail this oth
class of patterns.

In order to quantify the domain-wall dynamics, we co
verted the images to a scaled image of zig and zag doma
referred to as theangle map. This was done using the pro
cedure detailed in Ref.@7#. Briefly, the local angle of the
wave number is computed using the algorithm reported
Ref. @23#. This is used to produce an image with black a
white domains representing regions of zig and zag, resp
tively. Regions of superposition of zig and zag rolls~the
domain-walls! are represented by gray. Figure 3 illustrates
typical image@Fig. 3~a!# and the results after conversion

n.

FIG. 2. Four images of domain growth. Images~a! and ~b! are
with a modulation frequencyd f 50.008 Hz, at t596 s and t
5600 s after the quench, respectively. Images~c! and~d! are with a
modulation frequencyd f 520.072 Hz, att5112 s andt5700 s
after the quench, respectively. The solid bar in~a! is 0.2 mm.
8-3
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KAMAGA, FUNFSCHILLING, AND DENNIN PHYSICAL REVIEW E 69, 016308 ~2004!
an angle map@Fig. 3~b!#. Two measures of domain-wall siz
are used.

First, the normalized area of the domain wallA is consid-
ered. This quantity is proportional to the energy associa
with the domain-wall.A is defined as the total number o
gray pixels in the angle map divided by the total area of
viewing image. The area of the domain-wall will scale
A;wl/ l 25w/ l , where w is the width of the domain-wal
and l is a typical length scale for a domain. For a const
domain-wall width, this quantity scales as the inverse o
characteristic domain size. If the domain-wall width sca
differently than the typical domain size, a direct measure
the domain-wall length allows one to extract the scaling
the domain-wall width@4#.

FIG. 3. ~a! Image taken 384 s after a quench withd f
50.008 Hz.~b! The same image converted to an ‘‘angle’’ map. T
black and white regions are zig and zag rolls, respectively. The g
regions are the boundaries between domains.~c! The same image
processed to highlight only the domains boundaries~white!. The
scale bar in~a! represents 0.4 mm.
01630
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In order to directly measure the domain-wall width, w
converted the angle map image to an image of the dom
boundaries. An example of the result is shown in Fig. 3~c!.
This was a two step process. First, we reprocessed the a
map images so all the boundary pixels were associated
either a zig or zag domain, producing a black and wh
image. Then, a standard edge detection filter from theIMAQ

Vision package@24# was used to find the boundaries betwe
the domains. These boundaries are a single pixel wide, so
total number of boundary pixels gives the length of t
domain-wall. We tested a number of different algorithms
associating boundary pixels with a zig or zag domain,
cluding either associating all the boundary pixels with z
domains or all the pixels with zag domains. The details
associating a boundary pixel with a domain did not sign
cantly change the determination of the domain-wall leng
We considered the total domain-wall length per viewing a
L. For this measure,L; l / l 25 l 21. By comparingA and L,
we are able to obtain information aboutw.

The power spectrum,S(k), of each image was computed
This was used to determine the average wave number@^k&
[*kS(k)dk/*S(k)dk# for the zig and zag rolls. In addition
we considered two other measures of the domain growth
order to make contact with previous measurements.
widths of the fundamental peak inS(k) in both thex (sx)
andy (sy) directions were determined using the second m
ment of S(k). This gives sx[A^kx

2&2^kx&
2, with ^kx

2&
[*kx

2S(k)dk/*S(k)dk, and a similar definition forsy .
~Note all of the integrals were taken as sums over a fin
region around the fundamental peak, as described in
@7#.! sx andsy contain information about the typical size o
a domain and the distribution of wave numbers in the resp
tive directions. We also considered the width of the pow
spectrum of the angle map imageS(q). We useq to distin-
guish between the power spectrum of the angle map case
the power spectrum of the pattern itself. In this case, the p
is centered atq50, as the angle map domains are unifor
Therefore, the width of the peak is related to the typic
domain size only. Again, we separately considered the w
in the x direction (wx) and y direction (wy), where the
widths are defined in the same manner as forS(k).

III. RESULTS

Figure 4 shows the time evolution of the average wa
number ~normalized by the critical wave numberkc
50.17mm21) (^k&/kc) for the different quenches of inter
est. A number of features of the evolution are evident. Fi
as claimed, the late-time value of the^k& is dependent ond f
@see Fig. 4~a!#. However, the wave number never reache
constant value. For all quenches, the evolution aftert/td
'1000 is consistent with a very slow logarithmic growt
^k&/kc5a log10(t/td)1b, with a'0.01. This is illustrated in
Fig. 4~b!. There is a weak dependence on when the logar
mic growth begins ~with values ranging from 2.7
, log10(t/td),3.1) and on the coefficient~a! of the logarith-
mic growth @with values ranging from 0.006 to 0.02#. In
general, for largerud f u, evolution consistent with logarithmic
time dependence occurs at a later time.

y
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DEPENDENCE OF DOMAIN WALL DYNAMICS ON . . . PHYSICAL REVIEW E69, 016308 ~2004!
Figure 5 shows the evolution of the width of the pow
spectrum for both the pattern (sx andsy) and the angle map
(wx and wy) for two values ofd f . There are a number o
features that become apparent in these plots. First, initi
the widths of peaks derived from the pattern and the an
map are on the same order of magnitude, within a factor o
or 3. This is a reflection of the fact that the initial doma
sizes are on the same order as the variation in local w
number. Though as expected,sx and sy are larger thanwx
and wy . As the pattern evolves, the width of the peaks d
rived from the angle map become smaller. Ultimately,
widths based on the angle map reflect the fact that only a
domains are present in the image. In contrast, the width
the peaks based on images of the pattern do not cha
nearly as much. This reflects the slow changes in the va
tion of the local wave number that come to dominateS(k) at
late times. This difference is consistent with earlier resu
comparingS(k), which includes information about the varia
tion in local wave number, to more direct measures of
domain size@1,7#.

One can quantify the different rates of change of the t
measures in Fig. 5 by fitting the data to a power law,s;tn

or w;tn, and determining the growth exponentn. One finds
that growth exponents basedS(k) are smaller than thos
based onS(q). For late times, assumings;tn, the expo-
nentsn are on the order of 0.1. In contrast, forwx andwy ,
one obtains growth exponents ofn50.2 or larger. One can

FIG. 4. ~a! Average wave number~normalized by the critical
wave number! for the zig standing rolls as a function of time aft
the quench. Time is scaled by the director relaxation time,td . The
symbols are as follows:~h! d f 50.008 Hz, ~s! d f 520.012 Hz,
~n! d f 520.022 Hz, and~,! d f 520.072 Hz. The wave numbe
for the zag rolls shows similar behavior.~b! An expanded view of
the average wave number ford f 50.008 Hz. The solid line is a
guide to the eye illustrating the regime where the evolution of^k& is
consistent with logarithmic growth in time.
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see in Fig. 5 that the evolution ofS(q) is faster ford f 5
20.072 than it is ford f 50.008, and this is reflected in
roughly doubling of the value ofn. One can also use thes
exponents to test for strong anisotropy in the growth. T
examples in Fig. 5 illustrate the fact thatwx and wy have
different magnitudes initially, but similar time dependenc
This suggests that even though the domains are initially
isotropic, the degree of anisotropy is relatively constant
time. This is apparent in the spatial images where one d
not observe long, skinny domains at later times, as wo
happen if the growth itself was highly anisotropic. Simil
behavior is observed forsx andsy . This result justifies our
assumption of a single length scale@ l (t)# associated with the
domain size that is used for analyzing the domain-wall pr
erties.

As noted above, there are only a few domains presen
the image at late times. Therefore, the measures of the
main size based on the widths of the peaks inS(k) andS(q)
are limited by finite size effects and limited resolution. B
cause of these potential sources of error, the exponents
not being quoted as proof of a scaling regime. They
provided simply as a quantitative measure of the obvio
differences in temporal evolution evident in Fig. 5. A bett
measure of the rate of domain growth is obtained by
measurements of the domain-wall dynamics directly. F
these measures, there is sufficient total domain-wall len
present in the system that we can reliably measure the ra

FIG. 5. Width of the power spectrum as a function of time f
two different values ofd f . Time is scaled by the director relaxatio
time td . ~a! d f 50.008 Hz,~b! d f 520.072 Hz. In both cases, th
open symbols are for the power spectrum computed on the im
with the stripes, withsx given by the squares andsy given by the
circles. The closed symbols are for the power spectrum of the im
of the angle map, withwx given by the squares andwy given by the
circles.
8-5
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KAMAGA, FUNFSCHILLING, AND DENNIN PHYSICAL REVIEW E 69, 016308 ~2004!
change of the domain-wall length during the time we mo
tored the growth.

The results for the direct measurements of the dom
wall dynamics are summarized in Fig. 6. Figure 6~a! shows
the evolution of the total domain-wall length~L! for a num-
ber of values ofd f that span the range of values that w
studied. Figure 6~b! shows the evolution of the total doma
area~A! for the same values ofd f . In both cases, there is a
obvious change in the time evolution as one changesd f .
However, another weak effect is also apparent at early tim
there is initially more domain-wall present for larger valu
of d f , suggesting smaller domains. This is not the focus
this work, but it is worth a brief comment.

The fact that a larger shift in frequency produces sma
initial domains makes qualitative sense. The ‘‘nucleation’’
domains corresponds to the stabilization of standing w
patterns from an existing irregular state@14#. In the irregular
state, there is a characteristic domain size and wavelen
Domains with the ‘‘natural’’ wavelength dominate, though
range of wavelengths are present. Therefore, this is n
classic nucleation from a perfectly uniform phase. As o
changes the modulation frequency, regions with a wave n
ber that matches the selected wave number will stabi
relatively quickly. As the shift in modulation frequency rel
tive to the natural frequency increases, a smaller fraction
the pattern will have the ‘‘correct’’ wave number. Therefor
the initial size of the stabilized domains will be smaller.

As with the power spectra, we will use fits to power-la

FIG. 6. ~a! Total normalized domain-wall length~L! as a func-
tion of time. Time is scaled by the director relaxation timetd . The
symbols are as follows:~h! d f 50.008 Hz, ~n! d f 520.022 Hz,
and ~L! d f 520.072 Hz. ~b! Total normalized domain-wall are
~A! as a function of time. Time is scaled by the director relaxat
time td . The symbols are as follows:~h! d f 50.008 Hz, (n )d f
520.022 Hz, and (L) d f 520.072 Hz.
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growth to characterize the dynamics illustrated in Fig.
Unlike the power spectra, the measures of the domain-w
are not impacted by finite size effects during the time
which we studied the system. This is due to the fact that e
though only a few domains are present in the system, the
still a significant amount of domain-wall. However, one st
needs to be careful when interpreting these results. In stu
of domain coarsening, it is standard to assume that a l
time scaling regime exists in which the lengths characte
ing the domain size grow as a power law in time. One e
perimental difficulty with this assumption is determinin
when such a scaling regime is reached. This is especially
in the studies reported on here, where the average wave n
ber is still evolving in time for all of the conditions that w
studied~even if it is only logarithmic in time!. Therefore, our
focus is not on whether or not a true scaling regime has b
reached. Instead, because the data is consistent with a p
law of the formL(t);tn andA(t);tn, we can use the val-
ues ofn to compare the dynamics of the domain-walls und
different circumstances. Any claims of a true scaling regi
would be premature at this point, though the consistency
the data with power-law behavior suggests that it is poss
that such a regime has been reached.

Figure 7 summarizes the results for the measured gro
exponentsn for both L andA. One observes that the evolu
tion of the domains is significantly faster for largerud f u, with
n ranging from approximately 0.25–0.6. One also sees
the exponents forA andL are slightly different. The differ-
ence suggests an extremely slow decrease of the widt
time, with w;tn andn520.0460.01. By directly compar-
ing A and L one finds that the change in the width is on
;0.2 pixels. This is consistent with the observation based
the images that the domain-wall width is essentially const
during the evolution. It should be noted that the evolution
the domain-wall width reported in Ref.@4# was also slow.
However, in the simulations the domain-wall width grew
time, and we observe that, if anything, it shrinks in time.

IV. SUMMARY

The experiments reported on here demonstrate the c
connection between the dynamics of domain-walls in p

FIG. 7. Summary of measured scaling exponents~n! for both L
~solid squares!, andA ~open circles!.
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terned systems and the evolution of the background w
number after a sudden change in the external parameters
performed a series of quenches in which the steady-state
erage wave number after the quench is varied. The resu
evolution of the domain-walls depends on the steady-s
value of^k&. The rate of evolution for both the total domain
wall area and length increase as the wave number is va
away from its natural value.

AssumingA andL follow power-law scaling in time, ex-
ponents in the range of 0.25–0.6 are observed. As discu
in the Introduction, such a large variation in growth expon
is consistent with simulations of two different Swif
Hohenberg equations@1#. In Ref.@1#, the calculated exponen
is found to increase from 0.25 to 0.5 with a variation in wa
number of approximately 20%. This difference in avera
wave number was suggested as the source of the diffe
exponents. Though the agreement between our meas
ments and Ref.@1# is suggestive, it should be kept in min
that the simulations in Ref.@1# are for theisotropic Swift-
Hohenberg equation and our system isanisotropic. Along
these lines, it is interesting to compare the slow variation
the width of the domain-walls that we observed to t
changes reported in Ref.@4#. Though opposite in sign, simi
lar slow changes were observed in the simulations of an
tropic system@4#. These similarities between our results a
.M

.H
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nc
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n
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simulations of isotropic systems may be due to the fact t
the growth itself is relatively isotropic, as indicated by th
evolution of the power spectrum parallel and perpendicu
to the director~see Fig 5!. At a minimum, the agreemen
between our results and simulations suggests that fur
work is needed to fully understand the impact of wave nu
ber variation on domain growth in patterned systems.

Finally, our results suggest that small modifications in t
wave number of a pattern away from the natural wave nu
ber of the system can have a significant impact on the rat
growth of domains in the system. In our case, the maxim
variation in wave number was only 6%, but the expone
changed from 0.25 to 0.6. If these results carry over to ot
patterned systems, such as diblock copolymers, one can
a relatively significant impact on the rate of growth of d
mains in systems where this has a practical impact on v
ous processing applications@1,10#.
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