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Dependence of domain wall dynamics on background wave number
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We report on the growth of domains of standing waves in electroconvection in a nematic liquid crystal,
focusing on the evolution of domain walls. An ac voltage is applied to the system, forming an initial state that
consists of traveling striped patterns with two different orientations, zig and zag rolls. The standing waves are
generated by suddenly applying a periodic modulation of the amplitude of the applied voltage that is approxi-
mately resonant with the traveling frequency of the pattern. By varying the modulation frequency, we are able
to vary the steady-state, average wave number. We characterize the evolution of the domain walls as a function
of the average background wave number by measuring the total area and length of domain walls present in the
system as a function of time. We find that as the background wave number is varied away from the “natural”
wave number for the pattern, the evolution of the domain walls occurs at a faster rate.
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I. INTRODUCTION In this paper, we focus on the issue of the impact of the
background wave number on the dynamics of topological
Our understanding of the role of the interaction betweerdefects.
defects and a periodic background during the ordering of For systems in which the domains are composed of
patterned systems after a sudden quench remains limitedtripes, theoretical studies of the power-law scaling of the
Simulations of the growth of striped domains clearly point tolate-time domain growth has focused on simulations and
the importance of understanding the interaction between dexnalysis of the Swift-Hohenberg equatiph—4,9-12. Ex-
fects and the background wave numi&+4]. Yet, experi- periments have been performed in both a thermodynamic
mental studies are limitef6,5,7], and there is no general system, diblock copolymef$,6], and a driven system, elec-
theoretical understanding of the problem. The generic probtroconvection[7]. In this paper, we will refer tahermody-
lem of the response of a system to a sufficiently large, sudramic quenches, or systems, as ones where the asymptotic
den change of an external parameter, referred to as a quenciate after the quench is one of thermodynamic equilibrium.
arises in many materials situations, such as magnetic mat®riven systems refer to ones in which the asymptotic state is
rials, alloys, binary fluids, polymer blends, and liquid crys- not an equilibrium state, but it is a steady state of the system.
tals [8]. Generally, one is interested in the case where afypically, both the simulations and experiments consider
initially uniform state loses stability after the quench. Whenmeasurements of the structure facgjk). An important as-
there is more than one possibility for the new stigtech as  pect of such measurements is the fact that the width of the
spin up or down in a magnetic systgrdomains form. These relevant peaks in the structure factor is a measure of both
domains coarsen, or grow, as a function of time, a procesgariations in wave number and domain size. Therefore, in-
that is often referred to adomain coarseningr phase or- formation about the two important lengths scales are mixed
dering The dynamics of phase ordering for the special casé a nontrivial way. Various other measures of the domain
of uniform domains is relatively well understog8ll. In gen-  growth that do not contain information about the wave num-
eral, such domains are characterized by a single length scaber have been studied. These include orientational correla-
[(t) that grows according to a power la\it) ~t". Herenis  tion functions for the wave vector field, defect densities, and
referred to as thgrowth exponentFor systems with a non- domain-wall lengths. All of these measures probe only the
conserved order parameter=1/2. Systems with a con- domain size.
served order parameter hame 1/3. Generally, these expo- In both simulations and experiments, the changes in the
nents can be understood in terms of the topological defectgidth of the structure factor occur at a significantly slower
of the relevant order parametd]. In contrast, for patterned rate than changes in the other measures. In numerical simu-
domains, there is no general explanation of the observelitions, growth exponents that are determined from measure-
growth exponents, in terms of the topological defects or othments ofS(k) are consistent witim=1/5[1,10]. In contrast,
erwise. However, specific examples clearly point to the im-measurements based on orientational correlation functions
portance of the topological defecf&—-5]. One finds that exhibit a model dependence. Simulations of a version of the
there are two main complications when considering theSwift-Hohenberg model that has a potential are consistent
coarsening of patterned domair$) the interaction between with a growth exponenh=1/4, but the nonpotential case
the defects and the periodic background, &dthe addi- givesn=1/2[1]. The two experimental measures of striped
tional length scale that is set by the periodicity of the patterndomain growth are consistent with the simulation results for
the potential case. The orientational correlation function and
defect densities have been measured experimentally in
*Present address: Department of Physics, University of Californialiblock copolymerg6], giving n=1/4. For electroconvec-
at Santa Barbara, Santa Barbara, CA 93106, USA. tion, it was found that the growth exponent measured using
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S(k) is consistent witm=1/5 and measurement of the do- eling stripe state§17]; right- and left-traveling zig and zag
main size using total domain-wall length game=1/4 [7].  rolls. It has been established for this system that above a
These experiments clarified that the differences in growtteritical value for a modulation of the applied voltage at twice
exponents betweeB(k) and other measures could be ex- the traveling frequency, the system consists of either stand-
plained by considering the evolution of the local wave num-ing zig or zag rolls14]. Therefore, a sudden quench of the
ber distribution, which is found to dominate the width of System from below this critical value to above it results in
S(k) at late timeq7]. the nucleation of domains of standing zig and zag rolls,
The issue of the interaction between defects and the back¥hich proceed to coarsen. The dominant topological defects
ground periodicity is apparent in various features of domairl the system are domain-walls between the domains of zig
growth, as revealed in simulations. First, domain growth is2"d zag rolls. We will focus on the evolution of these

observed to be affected by strong pinning of grain boungdomain-walls.
aries by the periodic backgroufid, 11]. Because the pinning As discussed above, measurements of growth exponents

strength is related to the amplitude of the pattern, the med®' this system have focused on quenches that used exactly

sured growth exponents can depend on the depth of thwice the traveling frequency. This results in domains with
quench. A related issue is that the growth exponents are aldf® natural wave number for the pattern. Referefiere-
found to depend on the level of noise in the sys{@12]. ports a value oh=1/4 for the growth qf the domain size,
This is attributed to the fact that noise can provide a sourc@@sed on measurements of the domain-wall dynamics, and
of “depinning” for the defects. Finally, the difference in the N=1/5 for the scaling 08(k). A single initial experiment for
average wave number for the potential and nonpotential ve@ Modulation frequency slightly different from twice the
sions of the Swift-Hohenberg equations has been proposed §&veling frequency suggested similar behavior. However, a
one possible explanation of the different scaling exponent§yStematic exploration of changes in the wave number, by
for the orientational correlation functidil]. Recent simula-  varying the modulation frequency, is possible for this system
tions using a different model of stripe formatithe nonlin-  [14], and was not carried out at the time. In this paper, we
ear phase modehave shown that different classes of defects/®POrt on such a study. The rest of the paper is organized as
can lead to different growth exponefi. These same simu- follows. Section Il prowdes the details of the experlmentall
lations suggest that the domain-wall width and length evolveSyStem and the techniques used to analyze the domain
with different scaling in timd4], suggesting yet another pos- growth. Section lll presents the results of the experiment.

sible length scale in the problem. Section IV provides a discussion of the results.
In this paper, we report on a systematic, experimental
study of the impact of changes in the average wave number Il. EXPERIMENTAL DETAILS

on the growth of domains in which we find that the domain

growth occurs at a faster rate as the wave number is tuned We used the liquid crystal 1518] doped with iodine.
away from the “natural” wave number. This provides a use-Due to the nature of 152, 8% iodine by weight was used
ful test of the proposed explanation, based on the bacKnitially. However, a significant fraction of the iodine evapo-
ground wave number, for different growth rates that are obrates before the cells are filled, so the final concentration is
served in two versions of the Swift-Hohenberg equafibp ~ not well controlled. We used commercial liquid crystal cells
In particular, the growth of domains in the simulation also[19] composed of two transparent glass plates coated with a
was faster when the system was not at the “natural” wavelransparent conductor, indium-tin oxide. The cells were
number[1]. An important feature of the experiments is that 2.54xX2.54 cnf, with the conductor forming a square 1
we can tune the wave number over a range of values, instead1 cn in the center of the cell. The glass was also treated
of just the two wave numbers considered in the simulationgvith a rubbed polymer to obtain uniform planar alignment of
[1]. Furthermore, we report on measurements of the behavidhe director. We define the direction parallel to the undis-
of the domain-wall length and area that are compared wittiorted director to be the axis and the direction perpendicu-
simulations reported in Ref4]. The system we use is elec- ar to the undistorted director to be tyeaxis.

troconvection in the nematic liquid crystal 1943,14. A The apparatus is described in detail in RE20]. It
nematic liquid crystal is a fluid in which the molecules areconsists of an aluminum block with glass windows. The
aligned on averaggl5]. The axis along which the average temperature of the block was kept constantt6.001 °C.
alignment points is referred to as the director. For electroconPolarized light is applied from the bottom of the cell. Above
vection[16], a nematic liquid crystal is placed between two the cell, there is a charge-coupled device camera to capture
glass plates that have been treated so that the director ige image of patterns using the standard shadowgraph tech-
everywhere parallel to the plates. An ac voltage is appliedique[21].

perpendicular to the plates. Above a critical value of the We apply an ac voltage of the fornv(t)=+2[V,
voltage, a pattern of stripes forms. Because the system i$ V,COSyt)]coswgt) perpendicular to the glass plates.
anisotropic(the director selects a preferred axithe states HereV, is the amplitude of the applied voltage in the ab-
are usually characterized by the angle between the wave vesence of modulatiorl, is the modulation amplitudey, is

tor of the pattern and the undistorted directorStates with  the modulation frequency, angy is the driving frequency.
the same wave number and angt® are degenerate and For all of the experiments reported on herey/2w
referred to as zig and zag, respectively. For the system dis=25 Hz. The critical voltag®/. is defined as the value &f;
cussed in this paper, the initial pattern consists of four travfor which the system makes a transition from a uniform state
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FIG. 1. Onset value for standing waveb.( at a value of
€=0.04 as a function off=f* —f /2. Heref* is the natural travel
frequency of the pattern a¢=0.04 andf, is the modulation
frequency. The parametdsr, is the critical value ofb=V,,/V,. 7
HereV,, is the modulation voltage and.=16.6 V is the critical ‘/;ﬂ
voltage for the onset of a pattern in the absence of any modulation i'
The solid line is a fit to the data used to determirfe=0.26+
—0.01 Hz.
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to the superposition of traveling rollsy the absence of FIG. 2. Four images of domain growth. Images and (b) are

modulation For the studies reported on hei,=16.6 V.  with a modulation frequencysf=0.008 Hz, att=96s andt

There are two relevant control parameters:(V,/V)2—1 =600 s after the quench, respectively. Imaggsand(d) are with a

andb=V,,/V.. modulation frequencyf=—0.072 Hz, att=112 s andt=700 s
For the experiments discussed here, the system is initiallgfter the quench, respectively. The solid bafanis 0.2 mm.

at e=0.04 andb=0, i.e., above onset with no modulation.

This corresponds t&/,=17.0 V. As mentioned in Sec. |, modulation cycle. This ensured that the pattern was imaged
there are only four modes needed to describe the observed the same point in the standing wave cycle. Each image
convection rolls: zig and zag, right- and left-traveling ob- coyered a region of 4323.1 mn? of the cell. Time is scaled
lique rolls. This state is an example of spatiotemporal chaoBy the director relaxation timery=y,d2/(m?K,;)=0.2 s.

in that the amplitude of the four modes varies irregularly iNLare v, is a rotational viscosityKy; is the splay elastic
space and timg22]. For eache andw,,, there exists a criti- constant. and is the thickness of the cell

cal value ofb, b, above which the system consists of stand- An example of a small region of the pattern after a quench

ing zig and zag rolls. A quench corresponds to a sudden . S . . )
change ofb to some valueb>b,. At and belowV,, the IS given in Fig. 2. Two different quenches are illustrated:

modulation frequency with the strongest coupling to the pat—ifzo'oossz andst = ‘0h-97hz HZ% The ;magesd_illust_rate d
tern, and correspondingly smallest valuebgf is twice the the type of patterns on which we focused: standing zig an

Hopf frequencyw,,. The Hopf frequency is the traveling zag rolls sc_aparated by dom:_:u_n—walls.. The domain-walls
wave frequency aV,. As one increases, the natural fre- c!ea_rl_y consist of the superposition qf zig a_nd_zag rqlls. For
quency of the pattern shifts. Because we worked at a finit§ignificantly larger values o#f, there is qualitatively differ- -
value of ¢, the smallest value df. occurs for a modulation ent_behavpr. Regions of superposmon-that are “dolmams” in
frequencyw,,=20*, wherew* is the natural frequency of their own right appear. Further increasingf| results in pat-
the pattern at the given value ef Because it is the relative terns that are entirely the superposition of zig and zag rolls,
shift in frequency that matters, we will consider the behavioras existed fowf>0.01 Hz. Though interesting, in these pat-
as a function ofof=f*—f /2, wheref*=w*/27 andf,,  terns the defects are no longer domain-walls, but localized
=w/27. For all experiments considered here, the naturabefects. Future work will consider in more detail this other
frequency wad* =0.26+0.01 Hz. Figure 1 is a plot db,  class of patterns.
as a function ofsf for e=0.04. We focus almost exclusively In order to quantify the domain-wall dynamics, we con-
on the negative values &t because fobf>+0.01 Hz, the verted the images to a scaled image of zig and zag domains,
pattern stabilized by modulation is standing waves that are eeferred to as thangle map This was done using the pro-
superposition of zig and zag rolls, and not individual do-cedure detailed in Ref.7]. Briefly, the local angle of the
mains of standing zig and zag rolls. wave number is computed using the algorithm reported in
Quenches were performed for a range&t The final  Ref.[23]. This is used to produce an image with black and
value of b in each case was selected so that the quencivhite domains representing regions of zig and zag, respec-
depths all corresponded tbb=0.02, as measured from the tively. Regions of superposition of zig and zag roltbe
onset of standing wavesolid curve in Fig. 1L The camera domain-wall$ are represented by gray. Figure 3 illustrates a
was triggered to take the images at the same point in thtypical image[Fig. 3(@)] and the results after conversion to
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In order to directly measure the domain-wall width, we
converted the angle map image to an image of the domain
boundaries. An example of the result is shown in Fig).3
This was a two step process. First, we reprocessed the angle
map images so all the boundary pixels were associated with
either a zig or zag domain, producing a black and white
image. Then, a standard edge detection filter fromiae
Vision packagé¢24] was used to find the boundaries between
the domains. These boundaries are a single pixel wide, so the
total number of boundary pixels gives the length of the
domain-wall. We tested a number of different algorithms for
associating boundary pixels with a zig or zag domain, in-
cluding either associating all the boundary pixels with zig
domains or all the pixels with zag domains. The details for
associating a boundary pixel with a domain did not signifi-
cantly change the determination of the domain-wall length.
We considered the total domain-wall length per viewing area
L. For this measure, ~1/1?=1"1. By comparingA andL,
we are able to obtain information about

The power spectrung(k), of each image was computed.
This was used to determine the average wave nurfier
= [kS(k)dk/[S(k)dk] for the zig and zag rolls. In addition,
we considered two other measures of the domain growth in
order to make contact with previous measurements. The
widths of the fundamental peak ®&k) in both thex (o)
andy (o) directions were determined using the second mo-
ment of S(k). This gives o,=\(k2)—(k?, with (k2)
= [KiS(k)dKk/ [S(k)dk, and a similar definition foro, .
(Note all of the integrals were taken as sums over a finite
region around the fundamental peak, as described in Ref.
[7]) o and oy, contain information about the typical size of
a domain and the distribution of wave numbers in the respec-
tive directions. We also considered the width of the power
spectrum of the angle map ima&q). We useq to distin-
guish between the power spectrum of the angle map case and
the power spectrum of the pattern itself. In this case, the peak
is centered afj=0, as the angle map domains are uniform.
Therefore, the width of the peak is related to the typical

FIG. 3. (@ Image taken 384 s after a quench witf fjomain si;e only. Again, we separatgly considered the width
=0.008 Hz.(b) The same image converted to an “angle” map. The IN_ the x direction (v,) andy direction fw,), where the
black and white regions are zig and zag rolls, respectively. The gray/idths are defined in the same manner asS).
regions are the boundaries between domaiclsThe same image
processed to highlight only the domains boundafigkite). The Ill. RESULTS
scale bar in(a) represents 0.4 mm.

Figure 4 shows the time evolution of the average wave

an angle mapFig. 3b)]. Two measures of domain-wall size number (normalized by the critical wave numbek,
are used. =0.17 um™ 1) ((k)/k.) for the different quenches of inter-

First, the normalized area of the domain walis consid-  est. A number of features of the evolution are evident. First,
ered. This quantity is proportional to the energy associate@s claimed, the late-time value of ttle) is dependent odf
with the domain-wall.A is defined as the total number of [see Fig. 4a)]. However, the wave number never reaches a
gray pixels in the angle map divided by the total area of theconstant value. For all quenches, the evolution affey
viewing image. The area of the domain-wall will scale as~1000 is consistent with a very slow logarithmic growth:
A~wl/I?=w/l, wherew is the width of the domain-wall (k)/k.=alog;((t/74)+b, witha~0.01. This is illustrated in
and| is a typical length scale for a domain. For a constantFig. 4b). There is a weak dependence on when the logarith-
domain-wall width, this quantity scales as the inverse of anic growth begins (with values ranging from 2.7
characteristic domain size. If the domain-wall width scales<log,q(t/74) <3.1) and on the coefficieti) of the logarith-
differently than the typical domain size, a direct measure ofmic growth [with values ranging from 0.006 to 0.p2In
the domain-wall length allows one to extract the scaling ofgeneral, for largefsf|, evolution consistent with logarithmic
the domain-wall widtH4]. time dependence occurs at a later time.
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FIG. 4. (a) Average wave numbefnormalized by the critical

wave numberfor the zig standing rolls as a function of time after ) Ftlﬁf 5 \:V'dtlh of t%ef p_(lzvr\r/]er_spectlrugwbastha fg.r:ctltor; ?glg)r:;%;ﬂr
the quench. Time is scaled by the director relaxation timge,The Wo difierent values obt. Time IS scaled by the directo

symbols are as follows) 8f=0.008 Hz, (O) 6f=—0.012 Hz time 74. (@) 6f=0.008 Hz,(b) 6f=—0.072 Hz. In both cases, the
(A) 8f=-0.022 Hz an.c{V) 5f:',0 072’Hz The wave numk;er open symbols are for the power spectrum computed on the image
for the zag rolls shows similar behavigh) An expanded view of wlth the stripes, witho, given by the squares ang, given by thg

the average wave number fdif=0.008 Hz. The solid line is a circles. The closed s_,ymbo_ls are for the power spectrum of the image
guide to the eye illustrating the regime where the evolutiofkpfis o_f trlle angle map, withv, given by the squares and, given by the
consistent with logarithmic growth in time. circles.

Figure 5 shows the evolution of the width of the powersee in Fig. 5 that the evolution &(q) is faster for 6f=
spectrum for both the pattermr{ andoy) and the angle map —0.072 than it is forof=0.008, and this is reflected in a
(wy andw,) for two values ofsf. There are a number of roughly doubling of the value afi. One can also use these
features that become apparent in these plots. First, initiallgxponents to test for strong anisotropy in the growth. The
the widths of peaks derived from the pattern and the anglexamples in Fig. 5 illustrate the fact that, and w, have
map are on the same order of magnitude, within a factor of Zifferent magnitudes initially, but similar time dependence.
or 3. This is a reflection of the fact that the initial domain This suggests that even though the domains are initially an-
sizes are on the same order as the variation in local wavigotropic, the degree of anisotropy is relatively constant in
number. Though as expected, and o, are larger thaiw,  time. This is apparent in the spatial images where one does
andw, . As the pattern evolves, the width of the peaks denot observe long, skinny domains at later times, as would
rived from the angle map become smaller. Ultimately, thehappen if the growth itself was highly anisotropic. Similar
widths based on the angle map reflect the fact that only a fewehavior is observed far, and . This result justifies our
domains are present in the image. In contrast, the widths afssumption of a single length scélét)] associated with the
the peaks based on images of the pattern do not chang®main size that is used for analyzing the domain-wall prop-
nearly as much. This reflects the slow changes in the variaerties.
tion of the local wave number that come to domin&tk) at As noted above, there are only a few domains present in
late times. This difference is consistent with earlier resultshe image at late times. Therefore, the measures of the do-
comparingS(k), which includes information about the varia- main size based on the widths of the peakS(k) andS(q)
tion in local wave number, to more direct measures of theare limited by finite size effects and limited resolution. Be-
domain sizg1,7]. cause of these potential sources of error, the exponents are

One can quantify the different rates of change of the twonot being quoted as proof of a scaling regime. They are
measures in Fig. 5 by fitting the data to a power law;t"  provided simply as a quantitative measure of the obvious
or w~t", and determining the growth exponentOne finds  differences in temporal evolution evident in Fig. 5. A better
that growth exponents bases(k) are smaller than those measure of the rate of domain growth is obtained by our
based onS(q). For late times, assuming~t", the expo- measurements of the domain-wall dynamics directly. For
nentsn are on the order of 0.1. In contrast, far andw,, these measures, there is sufficient total domain-wall length
one obtains growth exponents ot 0.2 or larger. One can present in the system that we can reliably measure the rate of
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'1'0_' growth to characterize the dynamics illustrated in Fig. 6.
12k Unlike the power spectra, the measures of the domain-walls
L are not impacted by finite size effects during the time for
2.0 which we studied the system. This is due to the fact that even

though only a few domains are present in the system, there is
still a significant amount of domain-wall. However, one still
needs to be careful when interpreting these results. In studies
tion of time. Time is scaled by the director relaxation timg The  of domain coarsening, it is standard to assume that a late-
symbols are as follows{]) §f=0.008 Hz, (A) 6f=-0.022 Hz, time scaling regime exists in which the lengths characteriz-
and (¢) 6f=-0.072 Hz.(b) Total normalized domain-wall area ing the domain size grow as a power law in time. One ex-
(A) as a function of time. Time is scaled by the director relaxationperimental difficulty with this assumption is determining
time 74. The symbols are as followst]) 6f=0.008 Hz, A )6f  when such a scaling regime is reached. This is especially true
=-0.022 Hz, and @) 6f=—0.072 Hz. in the studies reported on here, where the average wave num-
ber is still evolving in time for all of the conditions that we
change of the domain-wall length during the time we moni-studied(even if it is only logarithmic in timg Therefore, our
tored the growth. focus is not on whether or not a true scaling regime has been
The results for the direct measurements of the domainreached. Instead, because the data is consistent with a power
wall dynamics are summarized in Fig. 6. Figut@6éshows law of the formL(t)~t" andA(t)~t", we can use the val-
the evolution of the total domain-wall length) for a num-  ues ofn to compare the dynamics of the domain-walls under
ber of values ofsf that span the range of values that we different circumstances. Any claims of a true scaling regime
studied. Figure @) shows the evolution of the total domain Would be premature at this point, though the consistency of
area(A) for the same values aff. In both cases, there is an the data with power-law behavior suggests that it is possible
obvious change in the time evolution as one changks that such a regime has been reached.
However, another weak effect is also apparent at early times: Figure 7 summarizes the results for the measured growth
there is initially more domain-wall present for larger valuesexponents for both L andA. One observes that the evolu-
of 5f, suggesting smaller domains. This is not the focus ofiion of the domains is significantly faster for largéx |, with
this work, but it is worth a brief comment. n ranging from approximately 0.25—-0.6. One also sees that
The fact that a larger shift in frequency produces smallethe exponents foA andL are slightly different. The differ-
initial domains makes qualitative sense. The “nucleation” ofence suggests an extremely slow decrease of the width in
domains corresponds to the stabilization of standing wavéme, withw~t" andn=—0.04+0.01. By directly compar-
patterns from an existing irregular stdtief]. In the irregular  iNg A andL one finds that the change in the width is only
state, there is a characteristic domain size and wavelength: 0.2 pixels. This is consistent with the observation based on
Domains with the “natural” wavelength dominate, though a the images that the domain-wall width is essentially constant
range of wavelengths are present. Therefore, this is not guring the evolution. It should be noted that the evolution of
classic nucleation from a perfectly uniform phase. As onehe domain-wall width reported in Ref4] was also slow.
changes the modulation frequency, regions with a wave numHowever, in the simulations the domain-wall width grew in
ber that matches the selected wave number will stabilizéme, and we observe that, if anything, it shrinks in time.
relatively quickly. As the shift in modulation frequency rela-
tive to the natural frequency increases, a smaller fraction of
the pattern will have the “correct” wave number. Therefore,
the initial size of the stabilized domains will be smaller. The experiments reported on here demonstrate the close
As with the power spectra, we will use fits to power-law connection between the dynamics of domain-walls in pat-

log(t/zq)

FIG. 6. (a) Total normalized domain-wall lengttiL.) as a func-

IV. SUMMARY
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terned systems and the evolution of the background wavsimulations of isotropic systems may be due to the fact that
number after a sudden change in the external parameters. \Wige growth itself is relatively isotropic, as indicated by the
performed a series of quenches in which the steady-state agvolution of the power spectrum parallel and perpendicular
erage wave number after the quench is varied. The resulting the director(see Fig 5. At a minimum, the agreement
evolution of the domain-walls depends on the steady-statBetween our results and simulations suggests that further
value 0f<k> The rate of evolution for both the total domain- work is needed to fu”y understand the impact of wave num-
wall area and length increase as the wave number is varigger variation on domain growth in patterned systems.
away from its natural value. Finally, our results suggest that small modifications in the
AssumingA andL follow power-law scaling in time, ex-  wave number of a pattern away from the natural wave num-
ponents in the range of 0.25-0.6 are observed. As discuss@@r of the system can have a significant impact on the rate of
in the Introduction, such a large variation in growth exponenigrowth of domains in the system. In our case, the maximum
is consistent with simulations of two different Swift- variation in wave number was 0n|y 6%, but the exponent
Hohenberg equatiorjd]. In Ref.[1], the calculated exponent changed from 0.25 to 0.6. If these results carry over to other
is found to increase from 0.25 to 0.5 with a variation in WaVEpatterned systems, such as diblock Copo|ymers' one can have
number of approximately 20%. This difference in average relatively significant impact on the rate of growth of do-
wave number was suggested as the source of the differef{ains in systems where this has a practical impact on vari-
exponents. Though the agreement between our measurggs processing applicatiofis,10.
ments and Refl1] is suggestive, it should be kept in mind
that the simulations in Refl] are for theisotropic Swift-
Hohenberg equation and our systemaisisotropic Along ACKNOWLEDGMENTS
these lines, it is interesting to compare the slow variation in
the width of the domain-walls that we observed to the This work was supported by NSF Grant No. DMR-
changes reported in Rd#]. Though opposite in sign, simi- 9975479. M. Dennin also thanks the Research Corporation
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tropic systeni4]. These similarities between our results andthis work.
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